APPLIED MATHEMATICS-II 2nd Exam/Common/0553/Feb'2021 (For 2018 Batch onwards)

SECTION-A

Duration: 1.15Hrs.

Q1. Attempt any three questions.

3x5=15

M.Marks:25

- i. If $x = 5t t^3$, $y = t^2 + 4t$, find $\frac{dy}{dx}$ at t = 1. ii. Differentiate log (log (log x)) w.r.t. x.
- iii. Differentiate $\sqrt{\frac{1-\cos x}{1+\cos x}}$ w.r.t. x.
- iv. Solve the differential equation $e^{y}(dy + dx) = xe^{y}dx$
- v. Evaluate $\int x^2 \tan^{-1} x \, dx$.
- vi. Find the equation of the normal to the curve $y = 6x^2 5x + 3at(1, 4)$.
- vii. Calculate by Simpson's rule an approximate value of $\int_{-3}^{3} x^{6} dx$, by taking seven equidistant ordinates.

SECTION-B

Q2. Attempt any one question.

1x10=10

- a. Find maximum and minimum or extreme value of the function $2x^3 15x^2 + 36x + 10$ b. Find $\frac{dy}{dx}$ of (sin x) x + x^x w.r.t. x.
- C. If x = a (θ + sin θ) and y = a(1 cos θ) find $\frac{d^2y}{dx^2}$
- d. Evaluate $\int \frac{(x^2+4)}{(x^2+1)(x^2+3)} dx$.
- e. Solve the following linear programming problem graphically: Minimize Z = 200x + 500ySubject to constraints: $x + 2y \ge 10$ $3x + 4y \le 24$

$$X \ge 0$$
 , $y \ge 0$