S.B. Roll No \qquad

APPLIED MATHEM ATICS-I
 $1^{\text {st }}$ Exam/ Common/ 2952/ Feb'2021
 (For 2018 Batch onwards)

Duration: 1.15 Hrs.

SECTION-A

Q1. Attempt any three questions.
M.Marks:25
$3 \times 5=15$
a. Prove that $\sin \left(420^{\circ}\right) \cos \left(390^{\circ}\right)+\cos \left(-300^{\circ}\right) \sin \left(-330^{\circ}\right)=-1$
b. Resolve $\frac{2 x+1}{x^{2}-3 x+2}$ into partial fr actions
c. Find the co-efficient of x^{16} in the expansion of $\left(x^{2}-2 x\right)^{10}$
d. Two vertices of a triangle are $(4,-6)$ and $(2,-2)$ and its centroid is $\left(\frac{8}{3},-1\right)$.Find the third vertex.
e. Obtain the perpendicular form of equation of line from the given value of $P=3$ and $\alpha=45^{\circ}$
f. Find the equation of a straight line through $(4,5)$ and parallel to $2 x-3 y-5=0$
g. Prove by using trigonometric formulae that
$\operatorname{Tan} 28^{\circ}=\frac{\cos 17^{\circ}-\sin 17^{\circ}}{\cos 17^{\circ}+\sin 17^{\circ}}$
h. If $Z_{1}=5+7 i$ and $Z_{2}=9-3 i$ then find Z_{1} / Z_{2}

SECTION-B

Q2. Attempt any one question.

$1 \times 10=10$

i. Find the equation of the circle passing through the points $(1,-5),(5,7)$ and $(-5,1)$.
ii. Show that $(\cos \alpha+\cos \beta)^{2}+(\sin \alpha+\sin \beta)^{2}=4 \cos ^{2}\left(\frac{\alpha-\beta}{2}\right)$
iii. If x is small enough that its higher powers may be neglected then show that

$$
\frac{\sqrt{9+7 x}-(16+3 x)^{1 / 4}}{(4+5 x)}=\frac{1}{4}-\frac{17}{384} x(\text { approx })
$$

iv. A boy observes the angle of elevation of a mountain top to be 60° and after walking directly away from it on level ground through 100 mt , the angle of elevation is 45°. Find the height of the mountain and the distance between the mountain and first postion of the boy.
v. Solve the following equation by Crammer's Rule
$x+y-z=-2$
$2 x-y-z=-7$
$4 x+y+2 z=4$

