S.B. Roll No \qquad

APPLIED MATHEM ATICS-I

$1^{\text {st }}$ Exam/ Common/ 2952/Jan'2022 (FOR 2018 BATCH ONWARDS)
Duration: 1.15Hrs.
M.Marks:25

SECTION-A

Q1. Attempt any three questions.
$3 \times 5=15$
a. Prove that $\cos \alpha+\cos \left(\alpha+\frac{2 \pi}{3}\right)+\cos \left(\alpha+\frac{4 \pi}{3}\right)=0$
b. Express the complex number $-1+\sqrt{3} i$ in polar form.
c. Prove that $\tan 13 A-\tan 9 A-\tan 4 A=\tan 13 A \tan 9 A \tan 4 A$
d. Find the value of k in order that the points $(k, 1),(5,5)$ and $(10,7)$ may be collinear.
e. Prove that $7 \log \frac{10}{9}-2 \log \frac{25}{24}+3 \log \frac{81}{80}=\log 2$.
f. Resolve $\frac{x^{2}+1}{\left(x^{2}+2\right)\left(x^{2}+3\right)}$ into partial fractions
g. Solve by using Crammer's rule $\quad 3 x-2 y=5, \quad x-3 y=-3$

SECTION-B

Q2. Attempt any one question.
$1 \times 10=10$
i. If x is so small that its square and higher powers may be neglected, then show that $\frac{\left(1+\frac{2 x}{3}\right)^{-5}+\sqrt{4+2 x}}{\sqrt{(4+3 x)^{3}}}=\frac{3}{8}-\frac{95}{192} x$
ii. Solve the following equations by matrix method

$$
\begin{aligned}
& 3 x+y+2 z=3 \\
& 2 x-3 y-z=-3 \\
& x+2 y+z=4
\end{aligned}
$$

iii. Find the equation of circle passing through three points $(5,7),(6,6)$ and $(2,-2)$.
iv. Prove thatsin $20^{\circ} \sin 40^{\circ} \sin 60^{\circ} \sin 80^{\circ}=\frac{3}{16^{\prime}}$.

