S.B. Roll No.....

APPLIED MATHEMATICS-I 1st Exam/Common/2952/Jan'2022 (FOR 2018 BATCH ONWARDS)

Duration: 1.15Hrs. M.Marks:25

SECTION-A

Q1. Attempt any three questions.

3x5=15

- a. Prove that $\cos \alpha + \cos \left(\alpha + \frac{2\pi}{3}\right) + \cos \left(\alpha + \frac{4\pi}{3}\right) = 0$
- b. Express the complex number $-1 + \sqrt{3}i$ in polar form.
- c. Prove that $\tan 13A \tan 9A \tan 4A = \tan 13A \tan 9A \tan 4A$
- d. Find the value of k in order that the points (k,1), (5,5) and (10,7) may be collinear.
- e. Prove that $7 \log \frac{10}{9} 2 \log \frac{25}{24} + 3 \log \frac{81}{80} = \log 2$.
- f. Resolve $\frac{x^2+1}{(x^2+2)(x^2+3)}$ into partial fractions
- g. Solve by using Crammer's rule 3x 2y = 5, x 3y = -3

SECTION-B

Q2. Attempt any one question.

1x10=10

i. If x is so small that its square and higher powers may be neglected, then show that

$$\frac{(1+\frac{2x}{3})^{-5}+\sqrt{4+2x}}{\sqrt{(4+3x)^3}} = \frac{3}{8} - \frac{95}{192}x$$

ii. Solve the following equations by matrix method

$$3x + y + 2z = 3$$
;
 $2x - 3y - z = -3$;
 $x + 2y + z = 4$

- iii. Find the equation of circle passing through three points (5,7), (6,6) and (2,-2).
- iv. Prove that $\sin 20^\circ \sin 40^\circ \sin 60^\circ \sin 80^\circ = \frac{3}{16}$.