S.B. Roll. No.....

APPLIED MATHEMATICS-II 2nd Exam/Common/0553/Jun'2022 (For 2018 Batch Onwards)

Duration: 3Hrs. M.Marks:75 SECTION-A Q1. a) Choose the correct answer. 15x1=15 i. $\lim_{x\to 0} \frac{\sin x^{\circ}}{x} = a$) 1 C) $\frac{\pi}{180}$ b) π d) –π ii. If $x = a\cos^3 t$, $y = a\sin^3 t$, then $\frac{dy}{dx}$ is equal t a) cot t b) cos t c) cosec t d) - tan t iii. The order of differential equation $(\frac{d^4y}{dx^4})^2 + 3(\frac{d^2y}{dx^2})^4 + y = 0$ is a) 4 b) 2 c) 8 d) 1 iv. $\int_{1}^{2} \log x dx =$ a) $\log \left(\frac{2}{e}\right)$ c) $\log(\frac{4}{2})$ d) $\log 2$ b) log 4 v. The derivative of cos^2x^2 with respect to x is equal to b) $2x \cos(2x^2)$ c) $-2x\sin(2x^2)$ d) $-2x\cos(2x^2)$ a) $2x \sin(2x^2)$ b) State True or False. vi. For tangent parallel to X-axis, $\frac{dy}{dx} = 0$ vii. Function is said to be odd if f(-x)= f(x) viii. $\int \frac{g'(x)}{g(x)} dx = \log g(x) + c$ ix. If $y = \log(\sin x)$, then $\frac{dy}{dx} = \cot x$ x. Every LPP admits an optimal solution. c) Fill in the blanks. xi. If $y = \log x$, then $\frac{d^2x}{dy^2}$ is equal to _____ xii. The restrictions in the form of inequalities on the variables in a LPP are called _____ xiii. If $\int_{-a}^{a} f(x) dx = 0$, then f is an _____ function. xiv. The differential co-efficient of a constant is _____. XV. $\int \frac{1}{\sqrt{a^2 - x^2}} dx =$ **SECTION-B** Q2. Attempt any six questions. 6x5=30 a. Evaluate $\lim_{x \to 1} \frac{\sqrt{3+x} - \sqrt{5-x}}{x^2 - 1}$ b. Find equation of the tangent to the curve $y = x^4 - 6x^3 + 13x^2 - 10x + 5$ at (1,3). c. Evaluate $\int \frac{e^x}{e^{2x}+6e^x+13} dx$ d. If $x = a(\theta + \sin \theta)$; $y = a(1 - \cos \theta)$, find $\frac{dy}{dx}$ at $\theta = \frac{\pi}{2}$. e. Find the area bounded by the curve $y = 4x - x^2$, the x-axis and the ordinates x = 1 and x = 3. f. Evaluate $\int_1^2 \frac{x^3}{\sqrt{x-1}} dx$ q. Differentiate $e^{\tan x}$ w. r. t. sin x.

h. Find $\frac{d^4y}{dx^4}$ if $y = x^3 \log x$

SECTION-C

3x10=30

Q3. Attempt any three questions.

i. Find the maximum or minimum values of the function $2x^3 - 21x^2 + 36x - 20$ ii. The velocity of a body moving in a straight line at different times is given below:

The velocity of a body moving in a straight line at different times is given below:							
	t(sec)	0	1	2	3	4	5
	v(m/sec)	4	3.98	3.87	3.55	2.83	0.61
Evaluate the distance in E see							

Evaluate the distance in 5 sec

iii. Integrate $\int x^2 \sin^2 x \, dx$ iv. Solve the differential equation $\sec^2 y \frac{dy}{dx} + 2x \tan y = x^3$.

iv. Solve the following linear programming problem graphically

Maximize and Minimize x + 2y, subject to the constraints $x+2y \ge 100$ $2x-y \le 0$ $2x+y \le 200$ $x, y \ge 0$