ς	R	Roll	No

APPLIED MATHEMATICS-II 2nd Exam/Common/0553/Dec'22

	(For 2018 Batch onward)	
Duratio	on: 3Hrs.	M.Marks:75
Q1. Att a. b. c. d. e. f. g. h. i. j. k. l. m.	SECTION-A sempt the following. $\int \log x dx.$ Function $f(x)$ is called anFunction if $f(-x) = f(x)$. Lt _{0→0} $\frac{1}{\cos\theta}$ is equal to Lt _{x→0} $\frac{1}{\tan 3x}$ Find the $\int x dx$ find the slope of a tangent to the curve , y=16-x² atx=1 Find the $\frac{d}{dx}a^x$ Find the area bounded by the curve $xy = 1$ and $x = 1, x = 3$ Find $\int x . e^x dx$ Evaluate $\int_{-a}^{a} f(x) dx$. if $f(x)$ is odd The rate of change of displacement is called of a moving point If $x = 3t^2 + 2t - 5$ Find the velocity Find $\int \frac{1}{x} dx$ Find The order of The Differential equation $\frac{d^2y}{dx^2} = \sqrt{1 + \frac{dy}{dx}}$ Find $\frac{d}{dx}(tanx)$	15x1=15
i. ii. iv. v. vi. vii.	SECTION-B empt any six questions. Prove that $\lim_{\theta \to 0} \frac{\tan \theta - \sin \theta}{\theta^3}$ if $y = \sqrt{1 + x^2}$, Show that $y \frac{dy}{dx} - x = 0$ If $x = a(\theta + \sin \theta)$, $y = a(1 + \cos \theta)$ so $find \frac{dy}{dx}$ If $y = \log(\cos x)$ Find y_2 The side of a square sheet is increasing at the rate of 3 cm per sec. At when the side 10 cm long. Find equation of the normal to curve $y = 6x^2 - 5x + 3$, $at(1,4)$ Find $\int \frac{(\tan^{-1} x)^2}{1 + x^2} dx$ Find $\int \frac{dx}{x^2 + 2x + 5}$ $\int_0^{\pi/2} \sin^8 x \cos^6 x dx$	6x5=30 nat rate is the area increasing
00.4::	SECTION-C	0.40.00
O3. Att	empt any three questions.	3x10=30

a. Solve the following linear programming problem graphically: 2 = 200 x + 500 y subject to the constraints x+ 2y≥ 10

 $3x + 4y \le 24$ $x \ge 0, y \ge 0$

S. B. Roll. No.....

- b. Differentiate $tanx^{logx} + x^x$ w.r.t x
- c. Find maximum and minimum value of the function $2x^3-15x^2+36x+10$
- d. Apply trapezoidal rule to evaluate $\int_4^8 \frac{1}{x-3} dx$ by taking for equal intervals. e. Solve the differential equation $y^2(x^2-1)\frac{dy}{dx} x^2(y^2-1)=0$ f. Find $\int \frac{1}{5+4 \sin x} dx$