S. B. Roll. No.....

APPLIED MATHEMATICS-I 1st Exam/Common/2952/Dec'22 (For 2018 Batch onward)

15X1=15

6x5 = 30

3x10=30

Duration: 3Hrs. M.Marks:75 **SECTION-A**

Q1. Answer in one line.

a. Find the Modulus of -1+i.

- b. Find quotient of fraction $\frac{(x-1)(x+2)}{(2x-8)(x-5)}$
- c. Find the value of 8!
- d. Find the number of terms in Expansion of $(1 + 2x)^{-4}$
- e. Find the value of $\frac{2\pi}{3}$ radian in the degrees
- f. find value of sin 360°
- g. Evaluate sin 220° + sin 270°
- h. Evaluate cos 53°cos 37°- sin 53°sin 37°
- i. Evaluate 3sin10 °-4sin 310 °
- Find the Polar co-ordinate of the point (-3, 4)
- k. Find the distance between point (-6,7) and (-1, -5)
- Find the slop of line 2x+4y-7=0
- m. Find radius of circle $x^2 + y^2 8x + 16y + 7 = 0$
- Evaluate k if $\begin{vmatrix} 8 & k \\ 4 & 5 \end{vmatrix} = 0$
- Find centroid of triangle whose vertices are (4, -3), (-9,7), (8,8)

Q2. Attempt any six questions.

i. If
$$a^2 + b^2 = 7ab$$
 prove that $\log \left(\frac{a+b}{3}\right) = \frac{1}{2} [loga + logb]$
ii. Prove that $\begin{vmatrix} x+a & x & x \\ x & x+a & x \\ x & x+a \end{vmatrix} = a^2(3x+a)$

- iii. Find the middle term (s) in the Binomial expansion of $(x+\frac{1}{x})^{12}$
- iv. Resolve into Partial fraction $\frac{2x+1}{x^2-3x+2}$
- v. prove that $\tan 13A \tan 9A \tan 4A = \tan 13A \tan 9A \tan 4A$
- vi. A (10,4),B (-4,9),c (-2,1) are the vertices of a triangle ABC find the equation of the altitude through B
- vii. Find the equation of straight line through (4,5) and parallel to 2x-3y-5=0
- viii. Show that $(\cos \alpha + \cos \beta)^2 + (\sin \alpha + \sin \beta)^2 = 4\cos^2 \frac{\alpha \beta}{2}$
- Show that $\frac{\cos 16 \degree + \sin 16 \degree}{\cos 16 \degree \sin 16 \degree} = \tan 61 \degree$

SECTION-C

Q3. Attempt any three questions.

a. Find the Equation of circle passing through point (1,2)(3,-4)(5,-6)

- b. Prove that $\sin 20^{\circ} \sin 40^{\circ} \sin 60^{\circ} \sin 80^{\circ} = \frac{3}{16}$
- When x is so small that its Square and higher powers may be neglected then show that $\frac{(9+7x)^{1/2}-(16+3x)^{1/4}}{4+5x}=\frac{1}{4}-\frac{17}{384}x$

- From the top of the cliff 150 m high the angles of depression of two boats which are opposite sides of the cliff are 60° and 30°. Find the distance between boats.
- e. Solve the equation by Cramer's method.

3x+y+2z=3

2x-3y-z=-3

x + 2y + z = 4